## The Mandelbrot set (mandelbrot).

Description: Very simple program to draw the Mandelbrot set. Scaling and zooming are set by
entering the values using the keyboard and are only elementary. Please have a look at the "mandelbrot readme" file,
included in the .zip archive, for details.

The Mandelbrot set is the set of complex numbers c for which the function fc(z) = z^2 + c does not diverge when iterated
from z = 0, i.e. for which the sequence fc(0), fc(fc(0)), etc. remains bounded in absolute value. Mandelbrot set images
may be created by sampling the complex numbers and testing, for each sample point c whether the sequence goes to infinity
(in practice, whether it leaves some predetermined bounded neighbourhood of 0 after a predetermined number of iterations).
Treating the real and imaginary parts of cas image coordinates on the complex plane, pixels may then be coloured according
to how soon the sequence crosses an arbitrarily chosen threshold, with a special color (usually black) used for the values
of c for which the sequence has not crossed the threshold after the predetermined number of iterations. Images of the
Mandelbrot set exhibit an elaborate and infinitely complicated boundary that reveals progressively ever-finer recursive
detail at increasing magnifications. The "style" of this repeating detail depends on the region of the set being examined.
The set's boundary also incorporates smaller versions of the main shape, so the fractal property of self-similarity applies
to the entire set, and not just to its parts. The Mandelbrot set has become popular outside mathematics both for its
aesthetic appeal and as an example of a complex structure arising from the application of simple rules. It is one of the
best-known examples of mathematical visualization. (Text from Wikipedia).

Issue: Vertical scrolling not implemented.

Free Pascal features: Console drawing of mathematical functions using the graph unit.

Click here for images |